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Island formation in disordered superconducting thin films at finite magnetic fields
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It has been predicted theoretically and observed experimentally that disorder leads to spatial fluctuations in
the superconducting (SC) gap. Areas where SC correlations are finite, coined SC islands, were shown experi-
mentally to persist into the insulating side of the superconductor-insulator transition. The existence of such
(possibly weakly coupled) SC islands in amorphous thin films of superconducting material accounts for
numerous experimental findings related to superconductor-insulator transition and nonmonotonic magnetore-
sistance behavior in the insulating region. In this work, a detailed analysis pertaining to the occurrence of SC
islands in disordered two-dimensional superconductors is presented. Using a locally self-consistent numerical
solution of the Bogoliubov—de Gennes equations, the formation of SC islands is demonstrated, and their
evolution with an applied perpendicular magnetic field is studied in some detail, along with the disorder-
induced vortex pinning. While mean-field theory cannot, in principle, explore phase correlations between
different islands, it is demonstrated that, by inspecting the effect of a parallel magnetic field, one can show that
the islands are indeed uncorrelated SC domains. Experimental predictions based on this analysis are presented.
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I. INTRODUCTION

Interplay between disorder and superconductivity has
been at the focus of attention for quite a long time. More
than four decades ago, it had been established that the effect
of weak disorder on superconductivity is not substantial.!-?
Strong disorder, however, may have a profound effect, driv-
ing the system from a superconducting (SC) to an insulating
state. Such a superconductor-insulator transition (SIT) was
observed in two-dimensional amorphous SC films.> Upon
decreasing the film thickness or increasing a perpendicular
magnetic field, these films (which are held below their bulk
critical temperature) exhibit a transition from a SC state,
characterized by a vanishing resistance as 7— T, to an in-
sulating state, in which the resistance diverges as 7— 0. The
possibility of tuning the system continuously between these
two extreme phases may be a manifestation of a quantum
phase transition (which, strictly speaking, occurs at zero
temperature).*

Despite the substantial amount of experimental data, and
numerous theoretical investigations, there are still several
unresolved issues pertaining to the physics of these systems.
One of the main puzzles is the mechanism by which the
magnetic field destroys the SC correlations. The “dirty bo-
son” theory,>® describing bosons (Cooper pairs) in a random
potential, regards the SIT as a transition into a Bose-glass
phase, in which the pairing amplitude is finite in the sample
but its phase is strongly fluctuating, giving rise to an insulat-
ing state. Such a phase is characterized by a pair-vortex du-
ality, and its hallmark is a universal value for the resistance
Ro=h/ 4¢? at the transition. While some experiments are
consistent with that prediction,” others are not.'%!! Beside
the issue of universal resistance, there are other observations
which cannot be simply explained by the dirty boson model,
for instance, the temperature dependence of the crossing
point and the classical XY critical exponent.!?
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The role of the large fluctuations in the local SC gap, A,
and the formation of SC islands have been emphasized in
several other works.!>-1 In Ref. 13, the authors predict the
existence of such islands by calculating the mesoscopic fluc-
tuations of the order parameter at the mean-field level. Since
phase fluctuations are ignored by mean-field calculations, it
was pointed out that there is no real SC transition within that
approximation. Later it has been shown'!# that inclusion of
quantum fluctuations (beyond mean field) indeed results in a
quantum phase transition. A detailed mean-field study of SC
correlations in disordered two-dimensional films has been
presented in Ref. 15, employing a locally self-consistent so-
lution of the mean-field Bogoliubov—de Gennes (BdG)
equations'” at finite temperature and at zero magnetic field. It
was indeed found that disorder induces strong fluctuations of
A in space, resulting in regions with large order parameter
(here interpreted as SC islands—SClIs), separated by regions
of vanishingly small order parameter. The role of tempera-
ture is found'® to be similar to that of disorder.

Recently, we have incorporated thermal phase fluctuations
beyond the BAG theory,'® and have demonstrated the forma-
tion of isolated SCIs within the two-dimensional disordered
negative-U Hubbard model: increasing magnetic field leads
to the loss of SC phase correlations between different areas
in the sample and an eventual SIT. The island picture is very
helpful in explaining some of the experimental puzzles. The
coexistence and competition between Cooper pair and elec-
tron (or quasiparticle) transport give rise to the nonuniversal-
ity of the critical resistance. It can also explain!® the non-
monotonic magnetoresistance behavior observed on the
insulating side of the SIT.?° The theory also predicts the per-
sistence of the SC islands into the insulating phase. Such SC
correlations in the insulating phase have been observed ex-
perimentally by using AC transport (and measuring the su-
perfluid stiffness on the insulating phase)?! and by
Aharonov-Bohm interference (where oscillations with period
h/2e in the magnetoresistance were observed in the magne-
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toresistance on the insulating phase, indicating the presence
of Cooper pairs).?

In this picture, the approach to the SIT from the insulating
side is governed by the emergence of phase correlations be-
tween the islands as temperature or magnetic field are low-
ered, eventually resulting in a macroscopically coherent
sample. This picture is in agreement with the (quantum) per-
colation scenario.>** Evidence for percolationlike behavior
is substantiated in several experiments.® 112326 Interestingly,
the theory also demonstrated that phase correlations between
different islands may be explored even within the mean-field
theory, by looking at the response to parallel (Zeeman) mag-
netic field (see below). Thus, in principle, the SIT can also be
investigated by solving the BdG equation in a finite magnetic
field. In this work, however, we focus on the effects of mag-
netic field on the formation and evolution of SC islands in
highly disordered two-dimensional SC systems in a wide
range of temperatures. (We separate the effects of magnetic
field into orbital field and Zeeman field, which we sometimes
refer to as perpendicular and parallel fields, even though each
of the latter leads to both orbital and Zeeman effects.)

The structure of this paper and the main achievements are
listed below. In Sec. II, the model and method of calculations
are briefly described. In Sec. III A, the role of perpendicular
magnetic fields is studied (assumed to act on the orbital de-
grees of freedom as mentioned above). In particular, it is
found that, as the field is increased, the size of the SC islands
shrinks and the strength of the local order parameter dimin-
ishes. It is explicitly shown that vortices are formed and their
disorder-induced pinning is analyzed. Moreover, these vorti-
ces tend to accumulate in places where, in the absence of
magnetic field, the order parameter was low (that is, in the
“normal regions” of the sample). The presence of these vor-
tices suppresses the Josephson couplings between the SCls,
leading eventually to completely decoupled islands. Sec.
III B is devoted to examining the role of a parallel magnetic
field, manifested by a Zeeman splitting. It is found that at
low temperatures and weak orbital magnetic fields, weakly
disordered systems exhibit an abrupt vanishing of the SC
order parameter in response to increasing parallel field, re-
sembling a first-order transition, as expected for a uniform
system.?” On the other hand, when either temperature, disor-
der, or the orbital field are increased, the system undergoes a
series of transitions, as a function of parallel field, corre-
sponding to the sequential vanishing of A on separate is-
lands, in agreement with Ref. 18. The emergence of local
magnetic order in areas where superconductivity is destroyed
is demonstrated. In Sec. IV, we summarize and discuss the
results.

II. MODEL AND BASIC EQUATIONS

In this section, the model and method of calculations are
briefly introduced. The starting point is the effective tight-
binding BAG Hamiltonian'” on a square lattice,

Hpag=- E tij(cja-cja"" Hc.)+ E (&= )iy
(ij),o i

+ 2 [Ar)chie] + A" (r)eqey ], (1)

where the sum (ij) runs on nearest neighbors, ¢; are random
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site energies taken from a uniform distribution [-W, W], with
W being the disorder strength, &;=u+ J%(n,} is the local
Hartree-shifted chemical potential,

A(r) == [U[c;jcin) (2)

is the local pairing potential, and U<0 is an effective
electron-electron on-site attractive interaction.!” The orbital
magnetic field enters via the nearest-neighbor hopping inte-
gral t;. In the Landau gauge, it can be written within the
Peierls substitution rule as

t;; =ty exp(-iay;) (3)

if r;—r; is in the x direction, and 7;;=¢, otherwise. In Eq. (3),
a=d¢/ ¢y, where ¢ is the magnetic flux per plaquette, ¢,
=hc/e is the flux quantum, and y, is the y-direction coordi-
nate (in units of lattice spacing). Hereafter, 7, is set to unity
and serves as a reference to all other energy scales. Using a
Bogoliubov transformation, one can diagonalize Hpyg ex-
actly and obtain the BdG equations,

£ A\ [ute)) [ue)
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In Eq. (4), gun(l'i)=—zéfi,i+§“n(ri+ 3)+(€i_ﬂi)un(ri)’ where
b=+%,*¥, and Au,(r)=A(r)u,(r;) and similarly for
v,(r;), and the energies are the quasiparticle (QP) excitation
energies E,=0. The pairing potential A(r;) and the electron
density per site n; are given, in terms of the QP amplitudes
u(r;) and v(ry),

A(r,-) = |U(ri)|2 ”n(ri)l):(ri),

(ny =22 o, ()% (5)

In what follows, Eq. (4) is solved numerically on a finite
(albeit large) two-dimensional square lattice with hard-wall
boundary conditions, starting with some initial guesses for
A(r;) and n;. A(r;) and n; are then determined via Eq. (5),
and the procedure is repeated until self-consistency is ob-
tained on each site. In order to be able to compare the same
system at different magnetic fields, the chemical potential is
altered in every iteration such that the total average density
per site <n>=ﬁ2in[ remains constant (N being the total num-
ber of sites in the lattice).

III. NUMERICAL RESULTS
A. Effect of orbital magnetic field

We start by examining the effect of an orbital magnetic
field on the pairing potential A. In Ref. 19, it was argued that
the SCIs diminish in size and may even vanish as the mag-
netic field is increased. This assumption is indeed confirmed
by the numerical results. Figure 1 depicts the spatial distri-
bution of the order-parameter amplitude, |A(r)|, in the two-
dimensional system, for three different values of the mag-
netic field. At zero magnetic field, the order parameter
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FIG. 1. Spatial distribution of the order-parameter amplitude |A|
for different values of the orbital magnetic field, ¢/,
=0,0.05,0.1. Bright regions, corresponding to large values of |A|,
constitute superconducting islands, separated by regions of small
|A| (dark regions). Increasing magnetic field leads to attenuation of
the SC order parameter and even to the vanishing of SC order in
some areas of the sample. Calculation is performed on a 12X 12
size lattice with electron density (n)=0.875, disorder strength W
=1, and interaction strength U=2 (this value for U is maintained
throughout).

fluctuates in space due to disorder, assuming larger values
(bright areas in Fig. 1) in places where the effective local
potential is small, i.e., €—i;=~0,'>? which facilitates fluc-
tuations between 0 and 2 electrons on the site. These areas
are separated by regions with small order parameter (dark
areas in Fig. 1) and hence constitute “superconducting is-
lands” (as will be shown in the following sections). As the
magnetic field is increased, the size of these islands and the
strength of the order parameter diminishes, and some SCIs
virtually disappear (that is, at very strong fields, the order
parameter there becomes smaller than the numerical toler-
ance). It should be pointed out that while the average value
of the order parameter diminishes by nearly 50% when the
flux is increased from ¢/ ¢y=0 to ¢/ py=0.2, the maximal
value of the order parameter drops by less than 10%, mean-
ing that the concept of “SC islands” persist well within the
strong-field region (it is the loss of correlations between the
islands that drives the system into its normal state).

The distribution function of the order-parameter ampli-
tude, P(JA|), is plotted in Fig. 2 for different values of the
magnetic field. As can be seen, the distribution function
shifts from being peaked around some finite initial value to
being peaked at A=0. However, the distribution tails persist
even at high field, indicating that SC islands are present.

In the inset of Fig. 2, the average order-parameter ampli-
tude (|A|) is plotted as a function of ¢/ ¢,. We note that (i) in
a finite lattice (|A|) never strictly vanishes, and (ii) for a
given disorder realization, {|/A]) may be a nonmonotonic
function of ¢/ ¢,. In fact, in a clean system, (|A[) has been
shown to oscillate as a function of magnetic field.?® Disorder,
however, tends to smear the nonmonotonicity, and upon av-
eraging over disorder realizations one obtains a monotoni-
cally decreasing function.

Another illustration of the interplay between disorder and
magnetic field is manifested in the location of the vortices. In
a clean system, one expects the vortices to form a regular
Abrikosov lattice. However, strong disorder modifies the po-
sition of vortices, as they are pinned within regions where
the amplitude of the order parameter has a small value. In
Fig. 3, the phase of the SC order parameter is plotted for

PHYSICAL REVIEW B 78, 024502 (2008)

0/¢=0.18 0/9,=0
\

\

4

3
P(<|AP>)
2

0 o1 02 03 04
|A]

FIG. 2. (Color online) Distribution function of the SC order-
parameter amplitude |A|, for seven different values of magnetic
field, ¢/ py=0-0.18 (calculated for a system size 16 X 16, averaged
over the entire lattice and over 25 realizations of disorder). With
increasing magnetic field, the distribution shifts from being peaked
at finite value (the uniform-system value) to being peaked at zero
value. Note, however, the persistence of tails at large |A| even at
high magnetic field, indicating the existence of regions with large
|A|. Inset: the average order-parameter amplitude, (|Al), as a func-
tion of ¢/ ¢y, showing a decrease in the SC order parameter with
the applied orbital magnetic field.

different values of the magnetic field corresponding to the
consecutive insertion of one additional flux quantum into the
system. As can be seen, a new vortex enters the system each
time an additional flux quanta is inserted, and vortices do not
form a lattice. Rather, their position is affected by disorder.

These correlations can be exposed more clearly. In Fig. 4,
the order-parameter amplitude at zero field is plotted [Fig.

L2x0/60=0 L2x¢/p0=1
\\K::: e
TR S
RS oy,
R A
s w N KR A
AR A
RS s
AR e,
ARRRRRRR A
AT, A
o waacn i ahh LY
RN A I ALY
ARRRRRR S
IR AT
PR A
AR ey
RRXRY e e
'\h\\w ?’ A »
R AT X
AT ity N
AN Tty \
A ARRR R X AN N
ARRR R i N
213 BNAS an ks M
2SS DIAAIAA PR
27 = A PN
b eI t N
7% sy e
% St Y N
2 N 0
NS 414 we
z N AR Y TN
FERRI AN 11341
L2x ¢/00=2 L2 ¢/60=3
ARSI AR A v st eyt
SRt AR wAWN LA A
TR ZraianEEE R
AR LAY w4 S 1S RNy
acr v n;; A S e 7] RS
KTttt ¥ttt a 4"
WLk AN ARSI SIS I AN
oA 3 Tk ARY S e vt vy 2
AR e ot AP SE A TP De i A AL N =
A »\z?q e NS et N
ey R AN oo N/
oA w2 AT gxx T
S W 4 “wg, L; =7, N
ey wi ,..a*"'; s eIy Rz i
et vt S e 3R
IS AR N Nl § ANy
STt AR RA A e § Sy
RESTTLAAAAEN N/ DSTIAR N e
Neverrx 4y ] NI ;:9; Qu.,"f R el e X
e e ot N o o a
NS N ez TN R .
Neary PR/t NS S AR T AT s
eeas 14 AW T “< g\._..-f =l e
Rarre ey 4 AN AN 3 it
N7 Ny A v
ki s A D1V § A v
-u.,_“‘% :"*".,»4" ‘ ‘s 20 > X g
NSe e RN X
o S
>
SN = AR )
SR AR | IR [T 3
AR DR 5 D 5 ¥ - ¥ ¥
3% S e
AN Z FATE R i

FIG. 3. Spatial mapping of the SC order-parameter phase for
values of magnetic field corresponding to a different number of flux
quanta in the system [i.e., ¢/ ¢y X (LXL)=0,1,2,3], on a 40X 40
size sample. Arrows point at the positions of the vortices. For each
number of flux quanta, a similar number of vortices are formed,
their position is irregular and determined by the disorder potential.
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FIG. 4. Comparison between (a) the order-parameter amplitude
at zero field and (b) the phase of the order parameter at finite field
(two flux quanta), indicating that the vortices are formed at the
position of weak superconducting order [dark regions in (a)].

4(a)], together with the phase of the order parameter [Fig.
4(b)], for the same system as in Fig. 3 with two flux quanta.
As can be seen, the vortex cores are positioned where the
amplitude is low [dark regions in (a)], i.e., they are “pinned”
to regions with low order parameter. The emerging interac-
tions between vortices still play a significant role, as, for
example, the second vortex that enters the system changes
the position of the first one.

In Ref. 18, it was shown that the SIT is driven by loss of
phase coherence between the SC phases on different islands.
The fact that vortices appear in regions of low order-
parameter amplitude, i.e., in between the SC islands, is con-
sistent with the picture that orbital magnetic field causes loss
of phase coherence between the islands; the effective Joseph-
son coupling between the islands is reduced with increasing
magnetic field, until the Josephson energy becomes smaller
than temperature (or the amount of quantum phase fluctua-
tions) and the islands decouple.

B. Evolution of superconducting islands in a parallel magnetic
field

In Sec. IIT A, the roles of disorder and orbital magnetic
field in generating fluctuations in the amplitude of the SC
order parameter have been demonstrated. However, the ques-
tion remains whether these fluctuations may be regarded as
separated SC islands. Here, we demonstrate how the Zeeman
effect resulting from an application of a parallel magnetic
field helps to answer this question. This is carried out by
extending our previous calculations,'® and including the elec-
tron spin through the Zeeman effect.

When a parallel magnetic field is applied, the single elec-
tron levels split. It was shown a long time ago?’ that upon
applying a parallel field, a uniform superconductor under-
goes a first-order transition. The reason for this transition is
simple: superconductivity requires occupation of paired
spin-up and spin-down states, which becomes costly with
increasing Zeeman energy. For a single pair, one expects the
transition to take place when the gain from superconductiv-
ity, Ay, (the bulk value of the order parameter), is overcome
by Zeeman energy, h.=gugB,, where B, is the strength of
the parallel field, g being the g factor for electrons and wy is
the Bohr magneton. In fact, when correlation effects are
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taken into account, one finds that the transition from super-
conductivity to a magnetically aligned state occurs at h,
=Ay/+2. For ultrasmall isolated SC grains, it was shown®’
that a finite-size effect (manifested in a level spacing of the
order of Ay) may smooth the otherwise sharp transition.

In order to account for the effect of parallel field, a Zee-
man splitting term E,-(,O'hc;fgci(, is added to the Hamiltonian
of Eq. (1). The Bogoliubov transformation now has to be
performed with spin-dependent quasiparticle amplitudes
u,~(r;) and v,.(r;), which now obey the spin-generalized
BdG equations,’!

E+xh A
A —&=+n

uni(r»

Unt(r)

uni(r»

U+ (1)) =(En=h)

(6)

Once these equations are solved, the local pairing potential
and occupation are determined by self-consistent equations
similar to that of Eq. (5). Note that for singlet (S-wave) pair-
ing, the different spin-generalized quasiparticle amplitudes
are decoupled, and the coupling between the different spins
enters only in the determination of the self-consistent Hartree
shift and order parameter.

For a clean or weakly disordered system and for parallel
field strength h<<h,, the eigenvectors are independent of &
(due to the simple dependence of the energies on the Zeeman
term), and hence the solution for the pairing amplitude A(r)
and the local occupation is unchanged. On the other hand,
for h> h,, a solution with A(r)=0 yields a lower free energy.
Thus, one should observe a steplike behavior of the order
parameter. In contrast, in a disordered system, as A(r) varies
in space, one also expects /. to be space dependent. For a
system composed of separated SCIs, one thus expects that
the order parameter on each island will vanish when A
> h.(i) (where i is an index for identifying the corresponding
island). Thus, the vanishing of the average value of A is
expected to exhibit multiple steps, each step corresponds to
the vanishing of superconductivity in a different island.

In Fig. 5, the average order-parameter amplitude (|Al) is
plotted as a function of % for different orbital fields. One can
clearly see that for small ¢ (weak perpendicular magnetic
field), the system undergoes a single sharp transition. In con-
trast, for finite values of ¢, step structure of (|A|) is indeed
visible. This is seen more clearly in the inset of Fig. 5 where
(|A]) is plotted as a function of & at a perpendicular field
¢/ $py=0.018, with much higher resolution in %. At this res-
olution, the steplike behavior is seen even for this high value
of the orbital field. Thus, large orbital field suppresses SC
correlations between the islands. They seem to lose SC order
separately and successively, depending on the specific value
of the gap for each SCI.

To make this visual, the spatial distribution of the pairing
parameter at ¢/¢y=0.014 is plotted in Fig. 6 for h
=0-0.012 [Figs. 6(a)-6(h)]. The consecutive vanishing of
the order parameter in different areas with increasing parallel
magnetic field is clearly visible. It is noticeable that even
when the order parameter vanishes, as a result of the field, in
one area of the sample, the other regions remain almost un-
affected. The different regions (for which the order param-
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FIG. 5. The average order-parameter amplitude (|A|) as a func-
tion of the Zeeman splitting & for different values of orbital mag-
netic field, ¢/ ¢y=0-0.014. For small ¢/ ¢, the system undergoes
a first-order transition, which is smoothed as ¢/ ¢, increases. For
b/ py=0.004, steps in (JA|) are visible. Inset: the same quantity for
¢/ Ppp=0.018, but with larger resolution in 4. At this resolution,

eter vanishes at different parallel fields) can thus be indeed
regarded as separated SClIs.

As already mentioned, another indication for the destruc-
tion of the SC order may be elucidated by examining the
local magnetization M(r)=(n(r)—n (r)), which develops
locally where SCIs are destroyed by the parallel field. This is
shown in Fig. 7, where we plot side by side the spatial dis-
tributions of the differential variations of the magnetization
and of the pairing potential, for a finite orbital field and for
different Zeeman fields (same values as in Fig. 6). It is
clearly seen that the magnetization (dark regions in the left
panels) develops only where SCIs (dark regions in the right
panels) shrink. Notice that even when the parallel field
strength exceeds the critical value (i, =~ 0.24 for these param-
eters), the magnetization still fluctuates, now due to correla-
tions with the local electron density.

An important and experimentally testable prediction of
the above calculation is that a strongly disordered SC film
subject to a parallel field may have both a zero resistance
state and finite magnetization. This is in contrast with a clean
film, which is either SC or spin polarized.

IV. SUMMARY AND DISCUSSION

In this paper, the physics related to formation of SCIs in
disordered two-dimensional SC films and their evolution un-

e
=h il

FIG. 6. Spatial distribution of the order-parameter amplitude |A|
at ¢/ py=0.014 for h=0-0.12 [(a)—(f)]. Arrows indicate regions in
which the order parameter vanishes abruptly (SC islands).
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FIG. 7. Spatial distribution of the differential changes in mag-
netization, oM (r,h)=M (r,h)—M(r,h—0.03) (columns 1 and 3),
and in pairing potential amplitude, &(r,n)=A(r,h)-A(r,h-0.03)
(columns 2 and 4), for different Zeeman fields £=0.045-0.12, and
for orbital field ¢/ ¢y=0.014. The emergence of magnetic correla-
tion occurs simultaneously and is highly correlated with the vanish-
ing of SC order.

der an applied magnetic field was addressed. SCIs are de-
fined as specific domains exhibiting large value of the order-
parameter amplitude surrounded by other domains for which
the amplitude of the order parameter is small. Using the lo-
cally self-consistent solution of the BAdG equations, it was
demonstrated that SCIs are formed in disordered SC films.
Upon an increase of the orbital magnetic field, the size of
these islands tends to decrease, together with the strength of
the order parameter. This is accompanied by loss of SC
phase correlations between different islands.

In order to verify that SCIs indeed constitute separate iso-
lated domains, the application of parallel magnetic fields has
been included in our numerical simulations. For a uniform or
weakly disordered sample, it results in a first-order transition
into a normal state. In contrast, for medium and high disor-
dered systems and in the presence of an orbital magnetic
field, it is found that upon increasing the parallel magnetic
field, the average order parameter vanishes in a series of
steps, indicating that each island undergoes a phase transition
at its own turn, with its own critical parallel field. This sub-
stantiates the picture of well separated and isolated SCIs. In
Ref. 18, we have demonstrated a one-to-one correspondence
between the phase correlations between the islands, at finite
orbital field and zero Zeeman field, on one hand, and their
sequential response to the Zeeman magnetic field, on the
other hand. This suggests that the SIT can be studied within
mean-field theory, even though the latter does not include
phase fluctuations.

The above results can in principle be addressed experi-
mentally, by means of local measurements using, e.g., scan-
ning tunneling microscopy, which is also sensitive to mag-
netic order. We predict that, as a function of parallel
magnetic field, the (average) SC order parameter will exhibit
a behavior resembling that of Fig. 5, that is, the transition
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will be smoothed when the orbital effects are dominant. The
local SC gap on an isolated island, on the other hand, should
exhibit a sharp attenuation characteristic of a first-order tran-
sition. This will be accompanied by local formation of mag-
netic order, so we expect local magnetism coexisting with
either bulk superconductivity (if the SCIs percolate) or local
superconductivity (if they do not).

Lastly, we point out that some of the phenomena dis-
cussed here were also observed in high-7,. superconductors.
Local variations in the SC gap have been observed by STM
measurements.3? In the underdoped region, it was observed*3
that local SC gap persists well into the normal phase. Even
more relevant is the observation® in these materials of inho-
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mogeneous magnetic response, which persists above T..
Thus, disorder may play an important role in high-7, super-
conductors, especially in the underdoped regime, leading, for
example, to the interpretation of the pseudogap, as an aver-
age over the spectra of SC and non-SC regions.
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